Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Zhongguo Meijie Shengwuxue ji Kongzhi Zazhi = Chinese Journal of Vector Biology and Control ; 33(4):596-600, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2025547

ABSTRACT

Hantaviruses are important pathogenes of natural focal diseases that causes hemorrhagic fever with renal syndrome and Hantavirus pulmonary syndrome. According to the latest classification of the International Committee on Taxonomy of Viruses, hantaviruses can be divided into 53 species, 7 genera, and 4 subfamilies. Hantaviruses are widely found in Rodentia, Chiroptera, and Insectivora, and later also found in reptile, Actinopterygii, and Agnatha. There are many species of bats, which are the second largest group of mammals in the world after rodents. At present, 1 446 species have been reported, accounting for about 22% of global mammals. In addition, bats have strong flight ability and are widely distributed in all continents except Antarctica. As the host animal of viruses, bats bear a variety of viruses, and many emerging infectious pathogens such as Marburg virus, Hendra virus, and Nipah virus have been confirmed to come from bats. Bats have also been associated to Ebola virus, severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. In recent decades, more and more bat-borne hantaviruses have been discovered. Bats and bat-borne hantaviruses have an important research value. Therefore, this paper reviews the latest classification of Hantavirus and bat-borne hantaviruses.

2.
Research Journal of Pharmacy and Technology ; 15(4):1653-1658, 2022.
Article in English | EMBASE | ID: covidwho-1929143

ABSTRACT

World Health Organization (WHO) has assessed that coronavirus disease 2019 (COVID-19) as an epidemic. However, an effective antiviral for COVID-19 is still uncertain. Since the onset of the outbreak, the scientific and clinical community keep proposing many agents that would have efficacy against COVID-19. Arbidol is an indole core with proven effectiveness against influenza over the past few years apart from critics. The concrete hypothesis of arbidol interaction with spike glycoprotein prevents the entry of virus. Further, demonstrated clinical efficiency of arbidol against RNA virus and broad-spectrum inhibition of influenza A and B virus, adenovirus, and other viruses, including hepatitis C virus, drives us to seek more understating of the molecule and its clinical possibilities. In this review, we attempt to describe the many possible hypotheses of arbidol against Covid-19.

3.
Indian J Pharmacol ; 52(5): 347-355, 2020.
Article in English | MEDLINE | ID: covidwho-962441

ABSTRACT

Zoonotic virus spill over in human community has been an intensive area of viral pathogenesis and the outbreak of Hantaan virus and severe acute respiratory syndrome coronavirus 2 (SARS CoV2) after late December 2019 caused a global threat. Hantaan virus is second to the COVID-19 outbreak in China with seven cases positive and one death. Both RNA viruses have opposite sense as in (-) for Hantaan virus and (+) for SARS CoV2 but have similarity in the pathogenesis and relevant clinical features including dry cough, high fever, shortness of breath, and SARS associated with pneumonia and certain reported cases with multiple organ failure. Although COVID-19 has global impact with high death toll, Hantaan virus has varyingly high mortality rate between 1% and 40%. Hence, there is a need to explore novel therapeutic targets in Hantaan virus due to its rapid evolution rate in its genetic makeup which governs virulence and target host cells. This review emphasizes the importance of structural and nonstructural proteins of Hantaan virus with relevant insight from SARS CoV2. The envelope glycoproteins such as Gn, Gc, and nucleocapsid protein (N) direct the viral assembly and replication in host cells. Therapeutic treatment has similarity in using ribavirin and extracorporeal membrane oxygenation but lack of efficacious treatment in both cases of SARAS CoV2 and Hantaan virus. Therefore, potential features regarding therapeutic targets for drug discovery for Hantaan viruses are discussed herewith. The conclusive description highlights that N protein is substantially involved in evoking immune response and induces symptoms and could be precursive target for drug discovery studies.


Subject(s)
COVID-19 Drug Treatment , Hantaan virus , Hemorrhagic Fever with Renal Syndrome/drug therapy , Animals , Antiviral Agents/therapeutic use , COVID-19/diagnosis , Chiroptera , Hemorrhagic Fever with Renal Syndrome/diagnosis , Humans , Pandemics , Rodentia , Viral Proteins , Zoonoses
4.
PeerJ ; 8: e9914, 2020.
Article in English | MEDLINE | ID: covidwho-789840

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.

SELECTION OF CITATIONS
SEARCH DETAIL